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ARITHMETIC OF A CERTAIN MODULAR CURVE

DAEYEOL JEON*

ABSTRACT. In this work, we study some arithmetic properties of
an intermediate modular curve Xa (21).

1. Introduction

Let N be a positive integer and A a subgroup of (Z/NZ)* which
contains +1. Let XA (V) be the modular curve defined over Q associated
to the congruence subgroup

TA(N) = {(‘c’ Z) €T(1) := SLa(Z) | a (mod N) € A, N | c} .

Then all the intermediate modular curves between X (V) and Xo(V)
are of the form Xa (V).

There is a very interesting modular curve Xa (21) where A = {+1, £8}
which is the only hyperelliptic intermediate modular curve with {+1} C
A C(Z/NZ)*.

A smooth, projective curve X with the genus ¢g(X) > 2 is called
hyperelliptic if it admits a surjective morphism ¢ : X — P! of degree
2. If X is a hyperelliptic curve, there exists a unique involution v,
called a hyperelliptic involution, such that X/(v) is a rational curve. A
hyperelliptic involution is contained in the center of the automorphism
group Aut(X), and it is defined over Q.

In fact, Ishii and Momose [2] asserted that there exist no hyperelliptic
modular curves Xa (V) with {+1} & A ¢ (Z/NZ)*. But the author and
Kim [4] proved that X (21) is hyperelliptic, and it is the unique one.
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In this paper, we study some arithmetic properties of X (21). Firstly
we give a new proof for that Xa(21) is hyperelliptic by using the com-
putations in [5]. Secondly we compute the full automorphism group
Aut(Xa(21)) of Xa(21). Finally we find the explicit expressions of all
the automorphisms of Xa(21).

2. Preliminaries
Let H be the complex upper half plane and H* = HUP*(Q), and let

T'1(N):= {(CC” Z) el(l) |a=d=1 (mod N), c=0 (mod N)}.

Then I'; (N) acts on H* by the linear fractional transformation, and then
the compact Riemann surface X;(N) = I'1(N)\H* is called a modular
curve.

The points of I';(V)\H are in one-to-one correspondence with the
equivalent classes of elliptic curves F together with a specified point P
of exact order N. Let L, = [r,1] be the lattice in C with basis 7 and
1. Then [r] € I'\(N)\H corresponds to [C/L, % + L;|. Thus I'y (N)\H
is a moduli space for the moduli problem of determining equivalence
classes of pairs (E, P), where E is an elliptic curve defined over C, and
P € E is a point of exact order N. Two pairs (E, P) and (E’, P’) are
equivalent if there is an isomorphism E ~ E’ which sends P to P’.

Now we note that

i g+ L) = [ =40 = e = () (0 (7)o (507))|
= [0+ (L= ey — br)y = 2 — (), (0,0)]

where p(z,7) := p(z, L;) is the Weierstrass elliptic function. From [1],

it follows that
2

(@(%aT) 7@(%77—)) (7_) _ _p/(ﬁaT)

oy 7?2 0 (35 7)
are modular functions on I'1 (V) and generate the function field of X;(N),
where the derivative is with respect to z. Furthermore, the function
field of X1 () can be generated by x,y satisfying the defining equation
fn(z,y) =0 of X;(N) for N <30 in Table 6 of [6], where z,y are con-
sidered as functions of 7 via the rational maps of Table 7 of [6], Eq. (2.1)
and the following relations:

(2.2) b=cr,c=s(r—1).

3
(2.1) b(r) = —
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3. Hyperelliptic modular curves

We consider the automorphisms on Xa(N). Note that XA(N) —
Xo(N) is a Galois covering with Galois group I'g(N)/T'a (V) which gives
automorphisms on Xa(N). For an integer a prime to N, let [a] denote
the automorphism of Xa(N) represented by v € I'g(IV) such that v =
(6 %) mod N. Sometimes we regard [a] as a matrix.

For each divisor d|N with (d, N/d) = 1, consider the matrices of
the form <d$ y > with x,y, 2z, w € Z and determinant d. Then these

Nz dw
matrices define a unique involution on Xo(N) which is called the Atkin-
Lehner involution and denoted by W,;. We denote by W, a matrix of the
above form. In general, W; may not define an automorphism of Xa (N).

Note that Xa(21) is isomorphic to the quotient space X1(21)/([8]).
Take [8] = (4 —5) then one can compute that

(3.1) (g = - @) e G’
¢ (31:7)
c(|8|T :—L(%J).
(8 =13

From the g-expansions of p(z,7) and '(z,7), the author with Kim
and Lee [5] compute the g-expansions x(7) and y(7) by using Eq. (2.1),
(2.2) and Table 7 of [6] where ¢ = €2™7. Also they compute the g-
expansions of z([8]7) and y([8]7) from Eq. (3.1). Then the functions
u:=x+zo[8 and v : =y + y o [8] are generators for the function field
of X;(21)/([8]). By using the g-expansions of z, y, x o [8], y o [8], they
compute a defining equation of X;(21)/([8]) as follows:

(3.2)
flu,v) = =2+ 4v — u+ u*o? + uv + u’v? + 3uv? — 3u?v + 5uv® — 3udv

+ 2utv — 5ul? + 3u® — w2 — 60+ — AP +ut + vt = 0.

Thus this equation is also a defining equation of X (21).

Firstly, we give a new proof for the hyperellipticity of X (21) by using
a computer algebra system Maple. Maple can compute the Weierstrass
form of hyperelliptic curves by using the following commands:

> with(algcurves):

> Weierstrassform(f (u,v),u,v,x,y);

Let a be a root of the polynomial g(x) := 2% — 42% — 622 + 42 — 2.
Then we have a defining equation y? = ch(z) for Xa(21) where
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¢ =3514407276010400° + 3557878167403560° — 269886886283168r
-+ 141066103901184,

and

4 2
h(z) = 2 + a7z’ + agz® + a5z’ + agz? + azz® + a2z® + a1z + ag,

a7 == = — (142800 — 8654002 + 36160 + 24712)

ag = 58(1319(202860a — 85697402 — 1052048 + 433812)
as = — %29(3271204 — 12569602 — 2091040 + 19136)

a4 == s —(2005360° — 67278002 — 15225080 — 624892)
a3 = £oos — (345603 — 1933202 — 13240a + 70896)

ag = 58:519 (7217203 — 27515002 — 50243200 + 284760)

ay = 58(1519(182720[ — 5424802 — 139080 + 2984)

ap = 58619(12()@ — 466802 — 19400 4 9567)

Therefore one can conclude that Xa(21) is a hyperelliptic curve of
genus 3.

Now we compute Aut(Xa(21)) by using the computer algebra system
MAGMA. MAGMA can compute the full automorphism group of hy-
perelliptic curves of genus 2 or 3. One can use the following commands:

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(g(x));

> P<x> := PolynomialRing(K);

>k c*h(x)

> C := HyperellipticCurve(k);

> GeometricAutomorphismGroup(C) ;

Then one can get the order of Aut(Xa(21)) to be 12. In fact, the
author, Im and Kim [3] prove that the quotient group 9a(21)/T'a(21)
is isomorphic to the dihedral group of order 12 where 9Ma(21) is the
normalizer of I'a(21) in PSLa(R). Since 9a(21)/T'A(21) can be consider
a subgroup of Aut(Xa(21)), one can conclude that Aut(Xa(21)) is the
dihedral group of order 12.
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Now we find the explicit expressions on Eq. (3.2) of all the auto-
morphsims of Xa(21). For that it suffices to find explicit expressions
of the generators of Aut(Xa(21)) which are [2]W3 and Wa;. Note that
W3 is the hyperelliptic involution on X (21) whose expression can be
obtained from the computations in [5] as follows:

—1 4+ 5v 4 3u® — Yuv + 6v% — 3uv? + v3 + 2udv + 3uv
(3.3) uoWs = ;
-2+ v — 3uv — v3 + udv
—1 4 3u — 4v — 3uv + 302 + 3ulv + v3 + 2w

1 — 20+ 6v2 — v3 + udv — 3u2v?

voWs=—

Now consider the automorphism [2] whose action on u and v are
uo2] =xo[2]+x0[l6] and vo [2] = yo [2] + y o [16]. By using
the g-expansions of u, v, u o [2] and v o [2], one can find the following
expressions:

(3.4)
wo 2] :—1+2U2—v3—2uv—u2v2—|—u3v

—1+v— 202 —uv + u2v? ’
Uom:74v+2v2fvgfufuv+uv2+uv3+u2—2u2v72u21)2+u3+u311

—14+v—20% +u— 3uv + wv? + wwd + u? + u?v + u?v? + udv

By the exact same method, one can get the expression of the action

by Wa1 as follows:

uwo Way

={243¢—3¢%+3¢%+ (@ —3C+3¢% —3¢%u+ (3¢ — 3¢ — 3¢ Mu? — (1 +3¢ —3¢% +3¢3)u®
—(T+3¢—6¢%+6¢* =3¢ +3¢% +6¢M v+ (2+43¢—6¢% +6¢% —3¢% +3¢% +6¢ ) uw
+(5+3¢% —3¢* =3¢ )uv — (14 3¢ —3¢° + 3¢ uv — (4 43¢ — 3¢° +3¢%)v?
— (3¢5 —3¢* =3¢ uv? + (4 — 3¢* — 3¢ +3¢H)uPv? + (4 — 3¢+ 3¢® — 3¢* +3¢° — 3¢5 — 3¢ )Y
/(=5 + 2u — 3u® + u® — 20 + uv — 2uv — 802 + 3uv? — v®),

vo Way

= {—76 — 76¢% + 76¢* — 26¢° +26¢% 4+ 76¢" + 26¢ + (—285 — 224¢% + 224¢* — 103¢° + 103¢® + 224¢™!
+103¢)u + (30 4 23¢3 — 23¢* +10¢% — 10¢® — 23¢* — 100)u® + (—42 — 23¢> + 23¢* — 16¢° + 16¢3
+23¢M +160)u® + (102 + 79¢% — 79¢* + 38¢° — 38¢% — 79¢tt — 38¢)ut + (314 + 277¢® — 277¢?
+107¢% — 107¢® — 277¢ — 107¢)v 4 (225 + 163¢% — 163¢* + 86¢° — 86¢% — 163¢** — 86¢)uv
+ (=171 — 146¢> + 146¢* — 61¢° + 61¢® + 146¢1 + 61¢)u’v + (—241 — 182¢3 + 182¢* — 88¢° + 88¢*®
+182¢M 4+ 88¢)ulv + (—522 — 418¢% + 418¢* — 185¢° + 185¢® + 418¢*! + 185¢)v? + (=72 — 55¢°
+55¢% — 26¢% +26¢% + 55¢! + 26¢)uv? + (261 — 93¢ + 93¢® + 207¢® — 93¢® — 207¢M — 207¢*)uo?
+ (25 — 9¢ + 9¢5 4+ 21¢3 — 9¢® — 21¢M — 21¢) w3} /{44 + 32¢3 — 32¢* +16¢® — 16¢% — 32¢T — 16¢
+ (63 4+ 43¢ — 43¢* +23¢°% — 23¢% — 43¢" — 23¢)u + (237 + 191¢% — 191¢* + 85¢° — 85¢% — 191¢™!
—85¢)u” + (—105 — 86¢° + 86¢* — 37¢% + 37¢® 4+ 86¢"! + 37¢)u® + (=66 — 47¢* 4 47¢* — 25¢°
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+25¢% 4+ 47¢" 4 25¢)u + (119 4 88¢® — 88¢* +47¢% — 47¢® — 88¢"" — 47¢)v + (—759 — 602¢°

+602¢* — 274¢% + 274¢® + 602¢1* + 274¢)uv + (333 + 262¢% — 262¢* + 119¢° — 119¢® — 262¢ ™!
—119¢)u?v + (164 + 130¢ — 130¢* 4 59¢° — 59¢® — 130¢™ — 59¢)u’v + (369 + 302¢% — 302¢*

+130¢% — 130¢® — 302¢* — 130¢)v? + (—165 — 133¢® + 133¢* — 59¢° + 59¢® + 133¢M + 590 uv® + v°},
where ( is a primitive 21-th root of unity.
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